Dynamic Chiropractic Chiroweb Naturopathy Digest Acupuncture Today Massage Today To Your Health


 
Active Hydrogen Adrenal Extracts Alanine Alpha-Linolenic Acid Alpha-Lipoic Acid AMP Amylase Inhibitors Arginine Bee Pollen Beta Carotene Beta-glucan Betaine Beta-Sitosterol Biotin Borage Oil Boron Bovine Cartilage Bovine Colostrum Brewer's Yeast Bromelain Calcium Capsaicin Carnitine Carnosine Chitosan Chloride Chlorophyll Chondroitin Chromium CLA Cobalt Coenzyme Q10 Copper Creatine Cysteine DHA DHEA DMAE EGCG Evening Primrose Oil 5-HTP Fiber (Insoluble) Fiber (Soluble) Fish Oil Flavonoids Fluoride Folate Fumaric Acid GABA Gamma-Linolenic Acid Glucomannan Glucosamine Glutamic Acid Glutamine Glutathione Glycine Grape Seed Extract Histidine HMB Hydroxycitric Acid Indole Inosine Inositol Iodine Ipriflavone Iron Isoleucine Lactase Lecithin Leucine Lipase Lutein Lycopene Lysine Magnesium Malic Acid Manganese Mannose Melatonin Methionine Methoxyisoflavone Molybdenum MSM N-Acetyl Cysteine NADH Naringin Niacin Octacosanol Oligosaccharides Olive Leaf Extract Ornithine Oryzanol PABA Pancreatic Enzymes Pantothenic Acid Phenylalanine Phosphatidylserine Phosphorus Phytic Acid Policosanol Potassium Pregnenolone Probiotics Propolis Psyllium Pyridoxine Pyruvate Quercetin Resveratrol Retinol Riboflavin Ribose Royal Jelly SAMe Selenium Shark Cartilage Silicon Sodium Spirulina Spleen Extracts St. John's Wort Strontium Sulforaphane Sulfur Taurine Thiamine Tocopherol Tea Tree Oil Tyrosine Usnic Acid Valine Vanadium Vinpocetine Vitamin A Vitamin B1 Vitamin B2 Vitamin B3 Vitamin B5 Vitamin B6 Vitamin B9 Vitamin B12 Vitamin C Vitamin D Vitamin H Vitamin K Whey Protein Xylitol Zinc
Abalone Shell (shi jue ming)
Abutilon Seed (dong kui zi)
Acanthopanax Bark (wu jia pi)
Achyranthes (niu xi)
Aconite (fu zi)
Acorus (shi chang pu)
Adenophora Root (nan sha shen)
Agkistrodon (bai hua she)
Agrimony (xian he cao)
Ailanthus Bark (chun pi)
Akebia Fruit (ba yue zha)
Albizzia Bark (he huan pi)
Albizzia Flower (he huan hua)
Alfalfa (medicago sativa)
Alisma (ze xie)
Aloe (lu hui)
Alum (bai fan)
Amber (hu po)
Ampelopsis (bai lian)
Andrographis (chuan xin lian)
Anemarrhena (zhi mu)
Antelope's Horn (ling yang jiao)
Apricot Seed (xing ren)
Areca Peel (da fu pi)
Areca Seed (bing lang)
Arisaema (tian nan xing)
Ark Shell (wa leng zi)
Arnebia (zi cao or ying zi cao)
Arnica (arnica montana)
Artichoke Leaves (Cynara scolymus)
Ash bark (qin pi)
Ashwagandha (withania somniferum)
Aster (zi wan)
Astragalus (huang qi)
Aurantium (zhi ke [qiao])
Bamboo Juice (zhu li)
Bamboo Shavings (zhu ru)
Belamcanda Rhizome (she gan)
Benincasa Peel (dong gua pi)
Benincasa Seed (dong gua xi/ren)
Benzoin (an xi xiang)
Bilberry (yue ju)
Biota Leaf (ce bai ye)
Biota Seed (bai zi ren)
Bitter Melon (ku gua)
Bitter Orange Peel (ju hong)
Black Cohosh (sheng ma)
Black Plum (wu mei)
Black Sesame Seed (hei zhi ma)
Bletilla (bai ji)
Boneset (ze lan)
Borax (peng sha)
Borneol (bing pian)
Bottle Brush (mu zei)
Buddleia (mi meng hua)
Buffalo Horn (shui niu jiao)
Bulrush (pu huang)
Bupleurum (chai hu)
Burdock (niu bang zi)
Camphor (zhang nao)
Capillaris (yin chen hao)
Cardamon Seed (sha ren)
Carpesium (he shi)
Cassia Seed (jue ming zi)
Catechu (er cha)
Cat's Claw (uncaria tomentosa)
Cephalanoplos (xiao ji)
Celosia Seed (qing xiang zi)
Centipede (wu gong)
Chaenomeles Fruit(mu gua)
Chalcanthite (dan fan)
Chebula Fruit (he zi)
Chinese Gall (wu bei zi)
Chinese Raspberry (fu pen zi)
Chrysanthemum (ju hua)
Cibotium (gou ji)
Cinnabar (zhu sha)
Cinnamon (rou gui or gui zhi)
Cistanche (rou cong rong)
Citron (xiang yuan)
Citrus Peel (chen pi)
Clam Shell (hai ge ke/qiao)
Clematis (wei ling xian)
Cloves (ding xiang)
Cnidium Seed (she chuang zi)
Codonopsis (dang shen)
Coix Seed (yi yi ren)
Coptis (huang lian)
Cordyceps (dong chong)
Coriander (hu sui)
Corn Silk (yu mi xu)
Cornus (shan zhu yu)
Corydalis (yan hu suo)
Costus (mu xiang)
Cranberry (vaccinium macrocarpon)
Cremastra (shan ci gu)
Croton Seed (ba dou)
Curculigo (xian mao)
Cuscuta (tu si zi)
Cuttlefish Bone (hai piao xiao)
Cymbopogon (xiang mao)
Cynanchum (bai qian)
Cynomorium (suo yang)
Cyperus (xiang fu)
Dalbergia (jiang xiang)
Damiana (turnera diffusa)
Dandelion (pu gong ying)
Deer Antler (lu rong)
Dendrobium (shi hu)
Devil's Claw (harpagophytum procumbens)
Dianthus (qu mai)
Dichroa Root (chang shan)
Dittany Bark (bai xian pi)
Dong Quai (tang kuei)
Dragon Bone (long gu)
Dragon's Blood (xue jie)
Drynaria (gu sui bu)
Dryopteris (guan zhong)
Earthworm (di long)
Eclipta (han lian cao)
Elder (sambucus nigra or sambucus canadensis)
Elsholtzia (xiang ru)
Ephedra (ma huang)
Epimedium (yin yang huo)
Erythrina Bark (hai tong pi)
Eucalyptus (eucalyptus globulus)
Eucommia Bark (du zhong)
Eupatorium (pei lan)
Euphorbia Root (gan sui or kan sui)
Euryale Seed (qian shi)
Evodia (wu zhu yu)
Fennel (xiao hui xiang)
Fenugreek (hu lu ba)
Fermented Soybeans (dan dou chi)
Flaxseed (ya ma zi)
Fo Ti (he shou wu)
Forsythia (lian qiao)
Frankincense (ru xiang)
Fritillaria (chuan bei mu)
Gadfly (meng chong)
Galanga (gao liang jiang)
Galena (mi tuo seng)
Gambir (gou teng)
Gardenia (zhi zi)
Garlic (da suan)
Gastrodia (tian ma)
Gecko (ge jie)
Gelatin (e jiao)
Genkwa (yuan hua)
Germinated Barley (mai ya)
Ginger (gan [sheng] jiang)
Ginkgo Biloba (yin xing yi)
Ginseng, American (xi yang shen)
Ginseng, Asian (dong yang shen)
Ginseng, Siberian (wu jia shen)
Glehnia (sha shen)
Glorybower (chou wu tong)
Goldenseal (bai mao liang)
Gotu Kola (luei gong gen)
Green Tea (lu cha)
Gymnema (gymnema sylvestre)
Gynostemma (jiao gu lan)
Gypsum (shi gao)
Halloysite (chi shi zhi)
Hawthorn (shan zha)
Hemp Seed (huo ma ren)
Homalomena (qian nian jian)
Honey (feng mi)
Honeysuckle Flower (jin yin hua)
Honeysuckle Stem (ren dong teng)
Houttuynia (yu xing cao)
Huperzia (qian ceng ta)
Hyacinth Bean (bai bian dou)
Hyssop (huo xiang)
Ilex (mao dong qing)
Imperata (bai mao gen)
Indigo (qing dai)
Inula (xuan fu hua)
Isatis Leaf (da qing ye)
Isatis Root (ban lan gen)
Java Brucea (ya dan zi)
Jujube (da zao)
Juncus (deng xin cao)
Kadsura Stem (hai feng teng)
Katsumadai Seed (cao dou kou)
Kelp (kun bu)
Knotweed (bian xu)
Knoxia root (hong da ji)
Kochia (di fu zi)
Lapis (meng shi)
Leech (shui zhi)
Leechee Nut (li zhi he)
Leonorus (yi mu cao)
Lepidium Seed (ting li zi)
Licorice (gan cao)
Ligusticum (chuan xiong)
Ligustrum (nŸ zhen zi)
Lily Bulb (bai he)
Limonite (yu liang shi)
Lindera (wu yao)
Litsea (bi cheng qie)
Lobelia (ban bian lian)
Longan (long yan hua [rou])
Lophatherum (dan zhu ye)
Loquat Leaf (pi pa ye)
Lotus Leaf (he ye)
Lotus Node (ou jie)
Lotus Seed (lian zi)
Lotus Stamen (lian xu)
Luffa (si gua luo)
Lycium Bark (di gu pi)
Lycium Fruit (gou qi zi)
Lygodium (hai jin sha)
Lysimachia (jin qian cao)
Magnetite (ci shi)
Magnolia Bark (hou po)
Magnolia Flower (xin yi hua)
Maitake (grifola frondosa)
Marigold (c. officinalis)
Massa Fermentata (shen qu)
Milk Thistle (silybum marianum)
Millettia (ji xue teng)
Mint (bo he)
Mirabilite (mang xiao)
Morinda Root (ba ji tian)
Mugwort Leaf (ai ye)
Mulberry Bark (sang bai pi)
Mulberry Leaf (sang ye)
Mulberry Twig (sang zhi)
Mullein (jia yan ye)
Musk (she xiang)
Myrrh (mo yao)
Notoginseng (san qi)
Notopterygium (qiang huo)
Nutmeg (rou dou kou)
Oldenlandia (bai hua she she cao)
Omphalia (lei wan)
Onion (yang cong)
Ophicalcite (hua rui shi)
Ophiopogon (mai dong)
Oroxylum Seed (mu hu die)
Oryza (gu ya)
Oyster Shell (mu li)
Passion Flower (passiflora incarnata)
Patrinia (bai jiang cao)
Pau D'Arco (tabebuia avellanedae)
Peach Seed (tao ren)
Pearl (zhen zhu [mu])
Perilla Leaf (su ye)
Perilla Seed (su zi)
Perilla Stem (su geng)
Persimmon (shi di)
Pharbitis Seed (qian niu zi)
Phaseolus (chi xiao dou)
Phellodendron (huang bai)
Phragmites (lu gen)
Picrorhiza (hu huang lian)
Pinellia (ban xia)
Pine Knots (song jie)
Pipe Fish (hai long)
Plantain Seed (che qian zi)
Platycodon (jie geng)
Polygala (yuan zhi)
Polygonatum (huang jing)
Polyporus (zhu ling)
Poppy Capsule (ying su qiao)
Poria (fu ling)
Prickly Ash Peel (hua jiao)
Prinsepia Seed (rui ren/zi)
Prunella (xia ku cao)
Prunus Seed (yu li ren)
Pseudostellaria (tai zi shen)
Psoralea (bu gu zhi)
Pueraria (ge gen)
Pulsatilla (bai tou weng)
Pumice (fu hai shi)
Pumpkin Seed (nan gua zi)
Purslane (ma chi xian)
Pyrite (zi ran tong)
Pyrrosia Leaf (shi wei)
Quisqualis (shi jun zi)
Radish (lai fu zi)
Realgar (xiong huang)
Red Atractylodes (cang zhu)
Red Clover (trifolium pratense)
Red Ochre (dai zhe shi)
Red Peony (chi shao)
Red Sage Root (dan shen)
Rehmannia (shu di huang)
Reishi (ling zhi)
Rhubarb (da huang)
Rice Paper Pith (tong cao)
Rose (mei gui hua)
Rosemary (mi die xiang)
Safflower (hong hua)
Saffron (fan hong hua)
Sandalwood (tan xiang)
Sanguisorba Root (di yu)
Sappan Wood (su mu)
Sargent Gloryvine (hong teng)
Saw Palmetto (ju zong lu)
Schefflera (qi ye lian)
Schisandra (wu wei zi)
Schizonepeta (jing jie)
Scirpus (san leng)
Scopolia (S. carniolica Jacq.)
Scorpion (quan xie)
Scrophularia (xuan shen)
Scutellaria (huang qin)
Sea Cucumber (hai shen)
Sea Horse (hai ma)
Seaweed (hai zao)
Selaginella (shi shang bai)
Senna (fan xie ye)
Shiitake (hua gu)
Siegesbeckia (xi xian cao)
Siler Root (fang feng)
Slippery Elm (ulmus fulva)
Smilax (tu fu ling)
Smithsonite (lu gan shi)
Sophora Flower (huai hua mi)
Sophora Root (ku shen)
Spirodela (fu ping)
Stellaria (yin chai hu)
Stemona (bai bu)
Stephania (fang ji [han])
Sweet Annie (qing hao)
Teasel Root (xu duan)
Tiger Bone (hu gu)
Torreya Seed (fei zi)
Tortoise Plastron (gui ban)
Tremella (bai mu er)
Trichosanthes Fruit (gua lou)
Trichosanthes Root (tian hua fen)
Trichosanthes Seed (gua lou ren)
Tsaoko Fruit (cao guo)
Turmeric (jiang huang)
Turtle Shell (bie jia)
Tussilago (kuan dong hua)
Urtica (xun ma)
Uva ursi (arctostaphylos uva-ursi)
Vaccaria Seed (wang bu lui xing)
Valerian (jie cao)
Veratrum (li lu)
Viola (zi hua di ding)
Vitex (man jing zi)
Walnut (hu tao ren)
Watermelon (xi gua)
White Atractylodes (bai zhu)
White Mustard Seed (bai jie ze)
White Peony (bai shao)
Wild Asparagus (tian men dong)
Windmill Palm (zong lu pi/tan)
Xanthium (cang er zi)
Zedoary (e zhu)
How Diet Can Feed Inflammation, Pain, and Chronic Disease

by David Seaman, MS, DC, DACBN

Neurogenic inflammation is thought to be involved in the pathogenesis of numerous conditions, such as osteoarthritis, migraine, dental disease, pancreatitis, virus-associated respiratory infection, nonproductive cough, allergic rhinitis, asthma, chronic bronchitis, sarcoidosis, inflammatory bowel disease, rheumatoid arthritis, and painful conditions in general.1-7

The figure at right represents a simplified version of the neurogenic inflammatory process. Immediately upon injury, damaged cells release various chemical mediators, and thereafter, intact cells in the area of injury produce many more mediators. Each of these mediators has receptors on group IV afferent fibers, which leads to the excitation or inhibition of the sensory nerve fibers typically associated with nociception and pain. One outcome of such stimulation can be chronic inflammation, pain, and the expression of the many diseases mentioned earlier.

Not generally appreciated is that group IV afferents also function to restore local tissue homeostasis and healing.8 Group IV afferents merely respond to the local chemical environment. I should emphasize that it is a huge error in thinking to assume that nociceptors only function to create pain. Nociceptors are extremely diverse in nature. Indeed, world-famous pain researchers understand better than the rest that group IV are not pain fibers:

"A nociceptor is not born to be and to remain that kind of fellow for the rest of his life. It is a dynamic entity, shifting its properties under the influence of, and according to, the necessities of its environment." 9

Notice in the figure that group IV afferents release substance P and CGRP (calcitonin gene-related peptide), which serve to stimulate local tissue cells. At this point in the neurogenic inflammatory process, chronic pain and disease would not be present. This is because substance P and CGRP are not themselves responsible for driving inflammation. Indeed, substance P, in particular, is often mischaracterized as an inflammatory chemical.

The pain, disease or healing outcome from substance P/CGRP release seems to be determined by the pro-inflammatory or anti-inflammatory nature of the chemicals released by the local cells. Notice the long list of mediators that local cells release; some promote inflammation and the diseases mentioned earlier, while others reduce inflammation and promote tissue healing – and nearly all of the mediators are regulated by diet. In particular, the eicosanoids or autocoids are derived exclusively from the fatty acids we consume. The leukotrienes (LTB), prostaglandins (PGE), prostacylins (PGI), lipoxins, resolvins, docosatrienes, and thromboxanes (TXA) are derived from either omega-6 (n-6) or omega-3 (n-3) fatty acids.

Humans are supposed to consume a 1:1 ratio of n-6s to n-3s; however, we currently average about 10:1 to 30:1.10 Anything above 4:1 is thought to be pro-inflammatory; this is because an increased level of dietary n-6 fatty acids leads to an increased production and release of pro-inflammatory autocoids from local cells (LTB4, PGE2, PGI2, TXA2).10 The omega-6 fatty acids and their autocoids also facilitate the release of some of the other pro-inflammatory chemicals listed in the figure, such as serotonin (5-HT), histamine, interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF), and growth factors.10

After the pro-inflammatory mediators are released, they again stimulate the local group IV afferents, which respond by releasing more substance P/CGRP – and thus, the cycle continues. Taking NSAIDs can only temporarily inhibit the conversion of pro-inflammatory fatty acids into their respective pro-inflammatory autocoids. After NSAID levels drop, we are left with a 30:1 ratio of n-6s to n-3s, which perpetuates the chronic inflammation cycle. We use the terms "inflammation" and "neurogenic inflammation;" however, "diet-driven inflammation" is a term that more accurately characterizes the problem.

Patients need to be told that their diet can either feed the healing process or feed chronic inflammation and the disease process. Group IV afferents can be referred to as pain fibers when conversing with patients who suffer from pain, and so these patients should be told that their diet functions to feed the pain fibers, leading to seemingly endless chronic pain.

Patients also need to know that correcting n-6 imbalances is not something a doctor can do for a patient. Only the patient can reduce his or her consumption of n-6s and increase n-3s, and this requires a disciplined approach to diet and supplementation. For example, consider that only fruits, vegetables, and potatoes have n-6:n-3 ratios below 4:1. Most fish, grass-fed animals and wild game have ratios approximately 4:1 or better. Fats/oils with acceptable ratios or low levels of n-6s include butter, olive oil, and coconut oil.11-12

Grains, grain flours, peanuts, and seeds have ratios of 20:1 or greater. Soy has a ratio of 7:1. Potato chips are oiled with corn, sunflower, cottonseed, or safflower oil, and these oils have n-6:n-3 ratios that range from 70:1 to over 100:1.11-12 These seed oils and the many packaged foods that are literally "bathing" in these oils feed the inflammatory process.

We and our patients should eat almost exclusively those foods with proper n-6:n-3 ratios. However, in today's fast-paced and inflamed society, it is likely that we are all going to come up short of our goal. For this reason, we all need to be supplementing with at least 1 gram of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil.


References
  1. Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology 2005;44:7-16.
  2. Waeber C, Moskowitz MA. Migraine as an inflammatory disorder. Neurology 2005;64(Suppl 2):S9-S15.
  3. Spierings EL. Pathogenesis of the migraine attack. Clin J Pain 2003;19:255-62.
  4. Lundy FT, Linden GJ. Neuropeptides and neurogenic mechanisms in oral and periodontal inflammation. Crit Rev Oral Biol Med 2004;15(2):82-98.
  5. Liddle RA, Nathan JD. Neurogenic inflammation and pancreatitis. Pancreatology 2004;4:551-60.
  6. O'Connor TM, O'Connell J, O'Brien DI, et al. The role of substance P in inflammatory disease. J Cell Physiol 2004;201:167-80.
  7. Brack A, Rittner HL, Stein C. Neurogenic painful inflammation. Curr Opin Anaesthesiol 2004; 17:461-64.
  8. Byers MR, Bonica JJ. Peripheral Pain Mechanisms and Nociceptor Plasticity. In: Loeser JD (editor). Bonica's Management of Pain, 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2001: p.26-72.
  9. Schmidt RF, Schaible HG, Mefslinger K, et al. Silent and active nociceptors: structure, functions, and clinical implications. Proc 7th World Cong Pain. Prog Pain Res Manag, Vol 2. Seattle: IASP; 1994: p.213-264.
  10. Simopoulos AP. Omega-3 fatty acids in health and chronic disease. Am J Clin Nutr 1999;70(suppl):560S-69S.
  11. Enig Mg. Know Your Fats. Bethesda Press: Silver Spring (MD): Bethesda Press; 2000: p.115.
  12. Cordain L. The Paleodiet. Hoboken: John Wiley & Sons; 2002.
Dr. David Seaman received his bachelor's degree in biology from Rutgers University, and then attended New York Chiropractic College, graduating in 1986. He earned his master's degree in nutrition from the University of Bridgeport in 1991 and completed his postdoctoral studies in neurology at Logan College of Chiropractic the next year. A popular and prolific author of nutrition, chiropractic and neurology articles, Dr. Seaman is author of the text Clinical Nutrition for Pain, Inflammation, and Tissue Healing.
Nutritional Wellness News Update: