Dynamic Chiropractic Chiroweb Naturopathy Digest Acupuncture Today Massage Today To Your Health


 
Active Hydrogen Adrenal Extracts Alanine Alpha-Linolenic Acid Alpha-Lipoic Acid AMP Amylase Inhibitors Arginine Bee Pollen Beta Carotene Beta-glucan Betaine Beta-Sitosterol Biotin Borage Oil Boron Bovine Cartilage Bovine Colostrum Brewer's Yeast Bromelain Calcium Capsaicin Carnitine Carnosine Chitosan Chloride Chlorophyll Chondroitin Chromium CLA Cobalt Coenzyme Q10 Copper Creatine Cysteine DHA DHEA DMAE EGCG Evening Primrose Oil 5-HTP Fiber (Insoluble) Fiber (Soluble) Fish Oil Flavonoids Fluoride Folate Fumaric Acid GABA Gamma-Linolenic Acid Glucomannan Glucosamine Glutamic Acid Glutamine Glutathione Glycine Grape Seed Extract Histidine HMB Hydroxycitric Acid Indole Inosine Inositol Iodine Ipriflavone Iron Isoleucine Lactase Lecithin Leucine Lipase Lutein Lycopene Lysine Magnesium Malic Acid Manganese Mannose Melatonin Methionine Methoxyisoflavone Molybdenum MSM N-Acetyl Cysteine NADH Naringin Niacin Octacosanol Oligosaccharides Olive Leaf Extract Ornithine Oryzanol PABA Pancreatic Enzymes Pantothenic Acid Phenylalanine Phosphatidylserine Phosphorus Phytic Acid Policosanol Potassium Pregnenolone Probiotics Propolis Psyllium Pyridoxine Pyruvate Quercetin Resveratrol Retinol Riboflavin Ribose Royal Jelly SAMe Selenium Shark Cartilage Silicon Sodium Spirulina Spleen Extracts St. John's Wort Strontium Sulforaphane Sulfur Taurine Thiamine Tocopherol Tea Tree Oil Tyrosine Usnic Acid Valine Vanadium Vinpocetine Vitamin A Vitamin B1 Vitamin B2 Vitamin B3 Vitamin B5 Vitamin B6 Vitamin B9 Vitamin B12 Vitamin C Vitamin D Vitamin H Vitamin K Whey Protein Xylitol Zinc
Abalone Shell (shi jue ming)
Abutilon Seed (dong kui zi)
Acanthopanax Bark (wu jia pi)
Achyranthes (niu xi)
Aconite (fu zi)
Acorus (shi chang pu)
Adenophora Root (nan sha shen)
Agkistrodon (bai hua she)
Agrimony (xian he cao)
Ailanthus Bark (chun pi)
Akebia Fruit (ba yue zha)
Albizzia Bark (he huan pi)
Albizzia Flower (he huan hua)
Alfalfa (medicago sativa)
Alisma (ze xie)
Aloe (lu hui)
Alum (bai fan)
Amber (hu po)
Ampelopsis (bai lian)
Andrographis (chuan xin lian)
Anemarrhena (zhi mu)
Antelope's Horn (ling yang jiao)
Apricot Seed (xing ren)
Areca Peel (da fu pi)
Areca Seed (bing lang)
Arisaema (tian nan xing)
Ark Shell (wa leng zi)
Arnebia (zi cao or ying zi cao)
Arnica (arnica montana)
Artichoke Leaves (Cynara scolymus)
Ash bark (qin pi)
Ashwagandha (withania somniferum)
Aster (zi wan)
Astragalus (huang qi)
Aurantium (zhi ke [qiao])
Bamboo Juice (zhu li)
Bamboo Shavings (zhu ru)
Belamcanda Rhizome (she gan)
Benincasa Peel (dong gua pi)
Benincasa Seed (dong gua xi/ren)
Benzoin (an xi xiang)
Bilberry (yue ju)
Biota Leaf (ce bai ye)
Biota Seed (bai zi ren)
Bitter Melon (ku gua)
Bitter Orange Peel (ju hong)
Black Cohosh (sheng ma)
Black Plum (wu mei)
Black Sesame Seed (hei zhi ma)
Bletilla (bai ji)
Boneset (ze lan)
Borax (peng sha)
Borneol (bing pian)
Bottle Brush (mu zei)
Buddleia (mi meng hua)
Buffalo Horn (shui niu jiao)
Bulrush (pu huang)
Bupleurum (chai hu)
Burdock (niu bang zi)
Camphor (zhang nao)
Capillaris (yin chen hao)
Cardamon Seed (sha ren)
Carpesium (he shi)
Cassia Seed (jue ming zi)
Catechu (er cha)
Cat's Claw (uncaria tomentosa)
Cephalanoplos (xiao ji)
Celosia Seed (qing xiang zi)
Centipede (wu gong)
Chaenomeles Fruit(mu gua)
Chalcanthite (dan fan)
Chebula Fruit (he zi)
Chinese Gall (wu bei zi)
Chinese Raspberry (fu pen zi)
Chrysanthemum (ju hua)
Cibotium (gou ji)
Cinnabar (zhu sha)
Cinnamon (rou gui or gui zhi)
Cistanche (rou cong rong)
Citron (xiang yuan)
Citrus Peel (chen pi)
Clam Shell (hai ge ke/qiao)
Clematis (wei ling xian)
Cloves (ding xiang)
Cnidium Seed (she chuang zi)
Codonopsis (dang shen)
Coix Seed (yi yi ren)
Coptis (huang lian)
Cordyceps (dong chong)
Coriander (hu sui)
Corn Silk (yu mi xu)
Cornus (shan zhu yu)
Corydalis (yan hu suo)
Costus (mu xiang)
Cranberry (vaccinium macrocarpon)
Cremastra (shan ci gu)
Croton Seed (ba dou)
Curculigo (xian mao)
Cuscuta (tu si zi)
Cuttlefish Bone (hai piao xiao)
Cymbopogon (xiang mao)
Cynanchum (bai qian)
Cynomorium (suo yang)
Cyperus (xiang fu)
Dalbergia (jiang xiang)
Damiana (turnera diffusa)
Dandelion (pu gong ying)
Deer Antler (lu rong)
Dendrobium (shi hu)
Devil's Claw (harpagophytum procumbens)
Dianthus (qu mai)
Dichroa Root (chang shan)
Dittany Bark (bai xian pi)
Dong Quai (tang kuei)
Dragon Bone (long gu)
Dragon's Blood (xue jie)
Drynaria (gu sui bu)
Dryopteris (guan zhong)
Earthworm (di long)
Eclipta (han lian cao)
Elder (sambucus nigra or sambucus canadensis)
Elsholtzia (xiang ru)
Ephedra (ma huang)
Epimedium (yin yang huo)
Erythrina Bark (hai tong pi)
Eucalyptus (eucalyptus globulus)
Eucommia Bark (du zhong)
Eupatorium (pei lan)
Euphorbia Root (gan sui or kan sui)
Euryale Seed (qian shi)
Evodia (wu zhu yu)
Fennel (xiao hui xiang)
Fenugreek (hu lu ba)
Fermented Soybeans (dan dou chi)
Flaxseed (ya ma zi)
Fo Ti (he shou wu)
Forsythia (lian qiao)
Frankincense (ru xiang)
Fritillaria (chuan bei mu)
Gadfly (meng chong)
Galanga (gao liang jiang)
Galena (mi tuo seng)
Gambir (gou teng)
Gardenia (zhi zi)
Garlic (da suan)
Gastrodia (tian ma)
Gecko (ge jie)
Gelatin (e jiao)
Genkwa (yuan hua)
Germinated Barley (mai ya)
Ginger (gan [sheng] jiang)
Ginkgo Biloba (yin xing yi)
Ginseng, American (xi yang shen)
Ginseng, Asian (dong yang shen)
Ginseng, Siberian (wu jia shen)
Glehnia (sha shen)
Glorybower (chou wu tong)
Goldenseal (bai mao liang)
Gotu Kola (luei gong gen)
Green Tea (lu cha)
Gymnema (gymnema sylvestre)
Gynostemma (jiao gu lan)
Gypsum (shi gao)
Halloysite (chi shi zhi)
Hawthorn (shan zha)
Hemp Seed (huo ma ren)
Homalomena (qian nian jian)
Honey (feng mi)
Honeysuckle Flower (jin yin hua)
Honeysuckle Stem (ren dong teng)
Houttuynia (yu xing cao)
Huperzia (qian ceng ta)
Hyacinth Bean (bai bian dou)
Hyssop (huo xiang)
Ilex (mao dong qing)
Imperata (bai mao gen)
Indigo (qing dai)
Inula (xuan fu hua)
Isatis Leaf (da qing ye)
Isatis Root (ban lan gen)
Java Brucea (ya dan zi)
Jujube (da zao)
Juncus (deng xin cao)
Kadsura Stem (hai feng teng)
Katsumadai Seed (cao dou kou)
Kelp (kun bu)
Knotweed (bian xu)
Knoxia root (hong da ji)
Kochia (di fu zi)
Lapis (meng shi)
Leech (shui zhi)
Leechee Nut (li zhi he)
Leonorus (yi mu cao)
Lepidium Seed (ting li zi)
Licorice (gan cao)
Ligusticum (chuan xiong)
Ligustrum (nŸ zhen zi)
Lily Bulb (bai he)
Limonite (yu liang shi)
Lindera (wu yao)
Litsea (bi cheng qie)
Lobelia (ban bian lian)
Longan (long yan hua [rou])
Lophatherum (dan zhu ye)
Loquat Leaf (pi pa ye)
Lotus Leaf (he ye)
Lotus Node (ou jie)
Lotus Seed (lian zi)
Lotus Stamen (lian xu)
Luffa (si gua luo)
Lycium Bark (di gu pi)
Lycium Fruit (gou qi zi)
Lygodium (hai jin sha)
Lysimachia (jin qian cao)
Magnetite (ci shi)
Magnolia Bark (hou po)
Magnolia Flower (xin yi hua)
Maitake (grifola frondosa)
Marigold (c. officinalis)
Massa Fermentata (shen qu)
Milk Thistle (silybum marianum)
Millettia (ji xue teng)
Mint (bo he)
Mirabilite (mang xiao)
Morinda Root (ba ji tian)
Mugwort Leaf (ai ye)
Mulberry Bark (sang bai pi)
Mulberry Leaf (sang ye)
Mulberry Twig (sang zhi)
Mullein (jia yan ye)
Musk (she xiang)
Myrrh (mo yao)
Notoginseng (san qi)
Notopterygium (qiang huo)
Nutmeg (rou dou kou)
Oldenlandia (bai hua she she cao)
Omphalia (lei wan)
Onion (yang cong)
Ophicalcite (hua rui shi)
Ophiopogon (mai dong)
Oroxylum Seed (mu hu die)
Oryza (gu ya)
Oyster Shell (mu li)
Passion Flower (passiflora incarnata)
Patrinia (bai jiang cao)
Pau D'Arco (tabebuia avellanedae)
Peach Seed (tao ren)
Pearl (zhen zhu [mu])
Perilla Leaf (su ye)
Perilla Seed (su zi)
Perilla Stem (su geng)
Persimmon (shi di)
Pharbitis Seed (qian niu zi)
Phaseolus (chi xiao dou)
Phellodendron (huang bai)
Phragmites (lu gen)
Picrorhiza (hu huang lian)
Pinellia (ban xia)
Pine Knots (song jie)
Pipe Fish (hai long)
Plantain Seed (che qian zi)
Platycodon (jie geng)
Polygala (yuan zhi)
Polygonatum (huang jing)
Polyporus (zhu ling)
Poppy Capsule (ying su qiao)
Poria (fu ling)
Prickly Ash Peel (hua jiao)
Prinsepia Seed (rui ren/zi)
Prunella (xia ku cao)
Prunus Seed (yu li ren)
Pseudostellaria (tai zi shen)
Psoralea (bu gu zhi)
Pueraria (ge gen)
Pulsatilla (bai tou weng)
Pumice (fu hai shi)
Pumpkin Seed (nan gua zi)
Purslane (ma chi xian)
Pyrite (zi ran tong)
Pyrrosia Leaf (shi wei)
Quisqualis (shi jun zi)
Radish (lai fu zi)
Realgar (xiong huang)
Red Atractylodes (cang zhu)
Red Clover (trifolium pratense)
Red Ochre (dai zhe shi)
Red Peony (chi shao)
Red Sage Root (dan shen)
Rehmannia (shu di huang)
Reishi (ling zhi)
Rhubarb (da huang)
Rice Paper Pith (tong cao)
Rose (mei gui hua)
Rosemary (mi die xiang)
Safflower (hong hua)
Saffron (fan hong hua)
Sandalwood (tan xiang)
Sanguisorba Root (di yu)
Sappan Wood (su mu)
Sargent Gloryvine (hong teng)
Saw Palmetto (ju zong lu)
Schefflera (qi ye lian)
Schisandra (wu wei zi)
Schizonepeta (jing jie)
Scirpus (san leng)
Scopolia (S. carniolica Jacq.)
Scorpion (quan xie)
Scrophularia (xuan shen)
Scutellaria (huang qin)
Sea Cucumber (hai shen)
Sea Horse (hai ma)
Seaweed (hai zao)
Selaginella (shi shang bai)
Senna (fan xie ye)
Shiitake (hua gu)
Siegesbeckia (xi xian cao)
Siler Root (fang feng)
Slippery Elm (ulmus fulva)
Smilax (tu fu ling)
Smithsonite (lu gan shi)
Sophora Flower (huai hua mi)
Sophora Root (ku shen)
Spirodela (fu ping)
Stellaria (yin chai hu)
Stemona (bai bu)
Stephania (fang ji [han])
Sweet Annie (qing hao)
Teasel Root (xu duan)
Tiger Bone (hu gu)
Torreya Seed (fei zi)
Tortoise Plastron (gui ban)
Tremella (bai mu er)
Trichosanthes Fruit (gua lou)
Trichosanthes Root (tian hua fen)
Trichosanthes Seed (gua lou ren)
Tsaoko Fruit (cao guo)
Turmeric (jiang huang)
Turtle Shell (bie jia)
Tussilago (kuan dong hua)
Urtica (xun ma)
Uva ursi (arctostaphylos uva-ursi)
Vaccaria Seed (wang bu lui xing)
Valerian (jie cao)
Veratrum (li lu)
Viola (zi hua di ding)
Vitex (man jing zi)
Walnut (hu tao ren)
Watermelon (xi gua)
White Atractylodes (bai zhu)
White Mustard Seed (bai jie ze)
White Peony (bai shao)
Wild Asparagus (tian men dong)
Windmill Palm (zong lu pi/tan)
Xanthium (cang er zi)
Zedoary (e zhu)
The Underestimated Value of Bitter Herbs

By Kerry Bone, BSc (hons), Dipl. Phyto.

Many cultures still recognize the value of bitter herbs in promoting digestive function and general health. Bitter drinks taken before meals are still called aperitifs, due reference to their value in aiding digestion. In Holland, older people would celebrate the bitter hour in the early evening when they would partake of bitter food and drink to support their fading digestive powers. In India, it is said that people with liver problems seek bitter-tasting substances. In Africa, the medicinal value of bitter herbs, particularly as digestive stimulants, is commonly recognized in traditional medical systems.1

It was still widely accepted in the early 20th century in medical and scientific circles that bitters supported digestive function; even Pavlov was said to have acknowledged this connection.2 However, this was a time when such assumptions were being subjected to scientific scrutiny.

In 1915, the American physiologist Carlson and co-workers published a study titled "The Supposed Action of the Bitter Tonics on the Secretion of Gastric Juice in Man and Dog."2 The group found that bitters applied either to the mouth (tasted) or directly to the stomach produced no change in the acidity and pepsin concentration of the gastric juice (prior to food actually being in contact with the stomach). Despite the fact that this study had a number of methodological flaws, notably that gastric secretions were not tested under the stimulus of actual contact with food, it was largely responsible for discrediting the concept of bitters as digestive stimulants.

However, new research has made considerable advances in our understanding of bitter taste receptors and the bitter response. A family of approximately 30 receptors (called TAS2R, or previously T2R) has been identified in mammals.3 The TAS2Rs are broadly tuned to each detect multiple bitter substances, explaining how humans can recognize numerous bitter compounds with only a limited set of receptors. They are expressed in a subset of taste receptor cells that are distinct from those mediating responses to other taste qualities.

Cells with these receptors appear to be wired to elicit aversive behavior, probably because many toxic chemicals are bitter in taste.3 One intriguing recent discovery is that bitter taste receptors are not restricted to the oral cavity.4 There are now numerous reports of TAS2Rs expressed in the gut, including the stomach, and in cell lines originating from gastrointestinal tissue. In fact, it is now recognized that the whole upper gastrointestinal tract is a tasting organ, not just the tongue, with TAS receptors also present for the sweet and umami (savory) tastes.5

Importantly, bitter receptors have been found on enteroendocrine cells and their activation promotes the release of gut peptides, in particular cholecystokinin (CCK).5 This triggers the secretion of pancreatic enzymes and bile and regulates stomach function, appetite and acid production. Activation of bitter receptors is also thought to indirectly improve the elimination of absorbed toxins from the gut epithelium.6 Lower in the gut, bitter receptors exert a different effect. Bitter compounds applied to the colonic epithelium induce fluid secretion, suggesting a mild laxative effect. All of these actions probably reflect the activation of detoxifying and protective functions of the gastrointestinal tract by bitter substances (since, as noted above, many toxins are bitter).

The discovery that bitter receptors occur downstream in the gastrointestinal tract and appear to regulate a number of physiological functions changes our understanding of bitter herbs. Specifically, it means that bitter herbs do not need to be tasted to boost upper digestive function. While tasting may be desirable for optimum effects, it is not essential. This means tablets or capsules containing bitter herbs are clinically active, although higher doses are probably necessary.

There are already clinical studies that support this new perspective. As early as 1956, Wolf and Mack carried out an excellent study on the action of various bitters on the stomach of their famous patient, Tom, who had an occluded esophagus and a gastric fistula.7 Bitters were administered by mouth and swallowed into the blind esophagus; the resulting salivary volume and gastric secretion were compared with direct administration into the stomach.

In the 96 experiments conducted, it was found that there was considerable variation in the effects of bitters. Surprisingly, golden seal (Hydrastis canadensis) was the most active herb and gentian (Gentiana lutea) was virtually inactive at the levels tested. The increase in salivation when the bitter was administered orally was usually comparable with the increase in gastric secretion after direct introduction into the stomach.

It was concluded that bitters mainly exerted a direct effect on the stomach, since no significant effect was observed in Tom's stomach following their oral administration. (However, it should be kept in mind that other experiments do support the benefits from tasting bitter herbs.8)

A more recent publication also suggested that bitters do indeed exert a direct effect in the stomach.9 When isolated stomach cells were exposed to different levels of an extract of gentian root, a concentration-dependent rise in gastric acid production was observed. Significant effects for gentian extract were observed at concentrations of 10 to 100 mcg/mL, a concentration range that can be readily achieved by normal doses of gentian.

Support for the concept of direct activity in the stomach also comes from a multicenter, uncontrolled study of gentian capsules involving 205 patients.10 Patients took on average about five capsules per day, each containing 120 mg of a 5:1 dry extract of gentian root, and achieved rapid and dramatic relief of symptoms, including constipation, flatulence, appetite loss, vomiting, heartburn, abdominal pain and nausea.

The new research also stresses that bitters can help regulate metabolic function. In epidemiological studies, functional variants in bitter taste receptors have been linked to alcohol dependency,11 adiposity,12 eating behavior disinhibition13 and body-mass index.14 Generally, people with lower bitter-tasting sensitivity exhibited the poorer health measure. The presence of bitter receptors on enteroendocrine cells suggests the mechanism behind these effects.

It also suggests a role for bitter herbs in glucose homeostasis and insulin resistance (since CCK is involved in glucose homeostasis). In support of this, 94 patients with prediabetes exhibited improvements in BMI, glycemic control and body fat when given just 16 to 48 mg/day of isohumulones (hop bitter acids) as capsules in a double-blind, placebo-controlled clinical trial.15 The bitter herb Andrographis paniculata has demonstrated antidiabetic activity in several experimental models and lowered glycated hemoglobin and fasting insulin levels in a small, uncontrolled pilot trial involving patients with type 2 diabetes.16

In summary, in addition to their role in improving upper digestive function, new research suggests that bitter herbs have a role to play in the management of constipation, insulin resistance, type 2 diabetes, metabolic syndrome and abdominal obesity. As such, their full therapeutic value is currently underestimated by most clinicians. Since bitters are energetically cold, they are best combined with warming and aromatic herbs such as ginger (Zingiber officinale) and chen pi (Citrus reticulata). Moreover, their role in boosting upper digestive function is augmented by their combination with known choleretic herbs such as milk thistle (Silybum marianum) and dandelion root (Taraxacum officinale). Most importantly, bitter herbs do not need to be tasted to exert their multiple therapeutic effects.


References

  1. Ogeto JO, Maitai CK. The scientific basis for the use of Strychnos henningsii (Gilg) plant material to stimulate appetite. East African Med J, 1983;60:603-607.
  2. Carlson AJ, Torchiani B, Hallock R. Contributions to the physiology of the stomach. XXI: The supposed actions of the bitter tonic on the secretion of gastric juice in man and dog. JAMA, 1915;64(1):15-17.
  3. Meyerhof W. Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol, 2005;154:37-72.
  4. Behrens M, Meyerhof W. Gustatory and extragustatory functions of mammalian taste receptors. Physiol Behav, 2011;105(1): 4-13.
  5. Valussi M. Functional foods with digestion-enhancing properties. Int J Food Sci Nutr, 2011[Epub ahead of print]
  6. Finger TE, Kinnamon SC. Taste isn’t just for taste buds anymore. F1000 Biol Rep, 2011;3:20.
  7. Wolf S, Mack M. Experimental study of the action of bitters on the stomach of a fistulous human subject. Drug Standards, 1956;24(3):98-101.
  8. Mills SM, Bone K. Principles and Practice of Phytotherapy. Modern Herbal Medicine. Churchill Livingstone, Edinburgh, 2000:38-41.
  9. Gebhardt R. Stimulation of acid secretion by extracts of Gentiana lutea L. in cultured cells from rat gastric mucosa. Pharm Pharmacol Lett, 1997;7(2-3):106-108.
  10. Wegener T. Anwendung eines Trockenextraktes aus Gentiana lutea radix bei dyspeptischem Symptomenkomplex. Z Phytother, 1998;19:163-164.
  11. Wang JC, Hinrichs AL, Bertelsen S, et al. Functional variants in TAS2R38 and TAS2R16 influence alcohol consumption in high-risk families of African-American origin. Alcohol Clin Exp Res, 2007;31(2):209-215.
  12. Tepper BJ, Koelliker Y, Zhao L, et al. Variation in the bitter-taste receptor gene TAS2R38, and adiposity in a genetically isolated population in Southern Italy. Obesity (Silver Spring), 2008;16(10):2289-2295.
  13. Dotson CD, Shaw HL, Mitchell BD, et al. Variation in the gene TAS2R38 is associated with the eating behavior disinhibition in Old Order Amish women. Appetite, 2010;54(1):93-99.
  14. Feeney E, O’Brien S, Scannell A, et al. Genetic variation in taste perception: does it have a role in healthy eating? Proc Nutr Soc, 2011;70(1):135-143.
  15. Obara K, Mizutani M, Hitomi Y, et al. Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes. Clin Nutr, 2009;28(3):278-284.
  16. Agarwal R, Sulaiman SA, Mafauzy SA. Open label clinical trial to study adverse effects and tolerance to dry powder of the aerial part of Andrographis paniculata in patients with type 2 diabetes mellitus. Malay J Med Sci, 2005;12(1):13-19.

Kerry Bone is a practicing herbalist; co-founder and head of research and development at MediHerb; and principal of the Australian College of Phytotherapy. He also is the author of several books on herbs and herbal therapy, including Principles and Practice of Phytotherapy and The Essential Guide to Herbal Safety.

Nutritional Wellness News Update: