Dynamic Chiropractic Chiroweb Naturopathy Digest Acupuncture Today Massage Today To Your Health


 
Active Hydrogen Adrenal Extracts Alanine Alpha-Linolenic Acid Alpha-Lipoic Acid AMP Amylase Inhibitors Arginine Bee Pollen Beta Carotene Beta-glucan Betaine Beta-Sitosterol Biotin Borage Oil Boron Bovine Cartilage Bovine Colostrum Brewer's Yeast Bromelain Calcium Capsaicin Carnitine Carnosine Chitosan Chloride Chlorophyll Chondroitin Chromium CLA Cobalt Coenzyme Q10 Copper Creatine Cysteine DHA DHEA DMAE EGCG Evening Primrose Oil 5-HTP Fiber (Insoluble) Fiber (Soluble) Fish Oil Flavonoids Fluoride Folate Fumaric Acid GABA Gamma-Linolenic Acid Glucomannan Glucosamine Glutamic Acid Glutamine Glutathione Glycine Grape Seed Extract Histidine HMB Hydroxycitric Acid Indole Inosine Inositol Iodine Ipriflavone Iron Isoleucine Lactase Lecithin Leucine Lipase Lutein Lycopene Lysine Magnesium Malic Acid Manganese Mannose Melatonin Methionine Methoxyisoflavone Molybdenum MSM N-Acetyl Cysteine NADH Naringin Niacin Octacosanol Oligosaccharides Olive Leaf Extract Ornithine Oryzanol PABA Pancreatic Enzymes Pantothenic Acid Phenylalanine Phosphatidylserine Phosphorus Phytic Acid Policosanol Potassium Pregnenolone Probiotics Propolis Psyllium Pyridoxine Pyruvate Quercetin Resveratrol Retinol Riboflavin Ribose Royal Jelly SAMe Selenium Shark Cartilage Silicon Sodium Spirulina Spleen Extracts St. John's Wort Strontium Sulforaphane Sulfur Taurine Thiamine Tocopherol Tea Tree Oil Tyrosine Usnic Acid Valine Vanadium Vinpocetine Vitamin A Vitamin B1 Vitamin B2 Vitamin B3 Vitamin B5 Vitamin B6 Vitamin B9 Vitamin B12 Vitamin C Vitamin D Vitamin H Vitamin K Whey Protein Xylitol Zinc
Abalone Shell (shi jue ming)
Abutilon Seed (dong kui zi)
Acanthopanax Bark (wu jia pi)
Achyranthes (niu xi)
Aconite (fu zi)
Acorus (shi chang pu)
Adenophora Root (nan sha shen)
Agkistrodon (bai hua she)
Agrimony (xian he cao)
Ailanthus Bark (chun pi)
Akebia Fruit (ba yue zha)
Albizzia Bark (he huan pi)
Albizzia Flower (he huan hua)
Alfalfa (medicago sativa)
Alisma (ze xie)
Aloe (lu hui)
Alum (bai fan)
Amber (hu po)
Ampelopsis (bai lian)
Andrographis (chuan xin lian)
Anemarrhena (zhi mu)
Antelope's Horn (ling yang jiao)
Apricot Seed (xing ren)
Areca Peel (da fu pi)
Areca Seed (bing lang)
Arisaema (tian nan xing)
Ark Shell (wa leng zi)
Arnebia (zi cao or ying zi cao)
Arnica (arnica montana)
Artichoke Leaves (Cynara scolymus)
Ash bark (qin pi)
Ashwagandha (withania somniferum)
Aster (zi wan)
Astragalus (huang qi)
Aurantium (zhi ke [qiao])
Bamboo Juice (zhu li)
Bamboo Shavings (zhu ru)
Belamcanda Rhizome (she gan)
Benincasa Peel (dong gua pi)
Benincasa Seed (dong gua xi/ren)
Benzoin (an xi xiang)
Bilberry (yue ju)
Biota Leaf (ce bai ye)
Biota Seed (bai zi ren)
Bitter Melon (ku gua)
Bitter Orange Peel (ju hong)
Black Cohosh (sheng ma)
Black Plum (wu mei)
Black Sesame Seed (hei zhi ma)
Bletilla (bai ji)
Boneset (ze lan)
Borax (peng sha)
Borneol (bing pian)
Bottle Brush (mu zei)
Buddleia (mi meng hua)
Buffalo Horn (shui niu jiao)
Bulrush (pu huang)
Bupleurum (chai hu)
Burdock (niu bang zi)
Camphor (zhang nao)
Capillaris (yin chen hao)
Cardamon Seed (sha ren)
Carpesium (he shi)
Cassia Seed (jue ming zi)
Catechu (er cha)
Cat's Claw (uncaria tomentosa)
Cephalanoplos (xiao ji)
Celosia Seed (qing xiang zi)
Centipede (wu gong)
Chaenomeles Fruit(mu gua)
Chalcanthite (dan fan)
Chebula Fruit (he zi)
Chinese Gall (wu bei zi)
Chinese Raspberry (fu pen zi)
Chrysanthemum (ju hua)
Cibotium (gou ji)
Cinnabar (zhu sha)
Cinnamon (rou gui or gui zhi)
Cistanche (rou cong rong)
Citron (xiang yuan)
Citrus Peel (chen pi)
Clam Shell (hai ge ke/qiao)
Clematis (wei ling xian)
Cloves (ding xiang)
Cnidium Seed (she chuang zi)
Codonopsis (dang shen)
Coix Seed (yi yi ren)
Coptis (huang lian)
Cordyceps (dong chong)
Coriander (hu sui)
Corn Silk (yu mi xu)
Cornus (shan zhu yu)
Corydalis (yan hu suo)
Costus (mu xiang)
Cranberry (vaccinium macrocarpon)
Cremastra (shan ci gu)
Croton Seed (ba dou)
Curculigo (xian mao)
Cuscuta (tu si zi)
Cuttlefish Bone (hai piao xiao)
Cymbopogon (xiang mao)
Cynanchum (bai qian)
Cynomorium (suo yang)
Cyperus (xiang fu)
Dalbergia (jiang xiang)
Damiana (turnera diffusa)
Dandelion (pu gong ying)
Deer Antler (lu rong)
Dendrobium (shi hu)
Devil's Claw (harpagophytum procumbens)
Dianthus (qu mai)
Dichroa Root (chang shan)
Dittany Bark (bai xian pi)
Dong Quai (tang kuei)
Dragon Bone (long gu)
Dragon's Blood (xue jie)
Drynaria (gu sui bu)
Dryopteris (guan zhong)
Earthworm (di long)
Eclipta (han lian cao)
Elder (sambucus nigra or sambucus canadensis)
Elsholtzia (xiang ru)
Ephedra (ma huang)
Epimedium (yin yang huo)
Erythrina Bark (hai tong pi)
Eucalyptus (eucalyptus globulus)
Eucommia Bark (du zhong)
Eupatorium (pei lan)
Euphorbia Root (gan sui or kan sui)
Euryale Seed (qian shi)
Evodia (wu zhu yu)
Fennel (xiao hui xiang)
Fenugreek (hu lu ba)
Fermented Soybeans (dan dou chi)
Flaxseed (ya ma zi)
Fo Ti (he shou wu)
Forsythia (lian qiao)
Frankincense (ru xiang)
Fritillaria (chuan bei mu)
Gadfly (meng chong)
Galanga (gao liang jiang)
Galena (mi tuo seng)
Gambir (gou teng)
Gardenia (zhi zi)
Garlic (da suan)
Gastrodia (tian ma)
Gecko (ge jie)
Gelatin (e jiao)
Genkwa (yuan hua)
Germinated Barley (mai ya)
Ginger (gan [sheng] jiang)
Ginkgo Biloba (yin xing yi)
Ginseng, American (xi yang shen)
Ginseng, Asian (dong yang shen)
Ginseng, Siberian (wu jia shen)
Glehnia (sha shen)
Glorybower (chou wu tong)
Goldenseal (bai mao liang)
Gotu Kola (luei gong gen)
Green Tea (lu cha)
Gymnema (gymnema sylvestre)
Gynostemma (jiao gu lan)
Gypsum (shi gao)
Halloysite (chi shi zhi)
Hawthorn (shan zha)
Hemp Seed (huo ma ren)
Homalomena (qian nian jian)
Honey (feng mi)
Honeysuckle Flower (jin yin hua)
Honeysuckle Stem (ren dong teng)
Houttuynia (yu xing cao)
Huperzia (qian ceng ta)
Hyacinth Bean (bai bian dou)
Hyssop (huo xiang)
Ilex (mao dong qing)
Imperata (bai mao gen)
Indigo (qing dai)
Inula (xuan fu hua)
Isatis Leaf (da qing ye)
Isatis Root (ban lan gen)
Java Brucea (ya dan zi)
Jujube (da zao)
Juncus (deng xin cao)
Kadsura Stem (hai feng teng)
Katsumadai Seed (cao dou kou)
Kelp (kun bu)
Knotweed (bian xu)
Knoxia root (hong da ji)
Kochia (di fu zi)
Lapis (meng shi)
Leech (shui zhi)
Leechee Nut (li zhi he)
Leonorus (yi mu cao)
Lepidium Seed (ting li zi)
Licorice (gan cao)
Ligusticum (chuan xiong)
Ligustrum (nŸ zhen zi)
Lily Bulb (bai he)
Limonite (yu liang shi)
Lindera (wu yao)
Litsea (bi cheng qie)
Lobelia (ban bian lian)
Longan (long yan hua [rou])
Lophatherum (dan zhu ye)
Loquat Leaf (pi pa ye)
Lotus Leaf (he ye)
Lotus Node (ou jie)
Lotus Seed (lian zi)
Lotus Stamen (lian xu)
Luffa (si gua luo)
Lycium Bark (di gu pi)
Lycium Fruit (gou qi zi)
Lygodium (hai jin sha)
Lysimachia (jin qian cao)
Magnetite (ci shi)
Magnolia Bark (hou po)
Magnolia Flower (xin yi hua)
Maitake (grifola frondosa)
Marigold (c. officinalis)
Massa Fermentata (shen qu)
Milk Thistle (silybum marianum)
Millettia (ji xue teng)
Mint (bo he)
Mirabilite (mang xiao)
Morinda Root (ba ji tian)
Mugwort Leaf (ai ye)
Mulberry Bark (sang bai pi)
Mulberry Leaf (sang ye)
Mulberry Twig (sang zhi)
Mullein (jia yan ye)
Musk (she xiang)
Myrrh (mo yao)
Notoginseng (san qi)
Notopterygium (qiang huo)
Nutmeg (rou dou kou)
Oldenlandia (bai hua she she cao)
Omphalia (lei wan)
Onion (yang cong)
Ophicalcite (hua rui shi)
Ophiopogon (mai dong)
Oroxylum Seed (mu hu die)
Oryza (gu ya)
Oyster Shell (mu li)
Passion Flower (passiflora incarnata)
Patrinia (bai jiang cao)
Pau D'Arco (tabebuia avellanedae)
Peach Seed (tao ren)
Pearl (zhen zhu [mu])
Perilla Leaf (su ye)
Perilla Seed (su zi)
Perilla Stem (su geng)
Persimmon (shi di)
Pharbitis Seed (qian niu zi)
Phaseolus (chi xiao dou)
Phellodendron (huang bai)
Phragmites (lu gen)
Picrorhiza (hu huang lian)
Pinellia (ban xia)
Pine Knots (song jie)
Pipe Fish (hai long)
Plantain Seed (che qian zi)
Platycodon (jie geng)
Polygala (yuan zhi)
Polygonatum (huang jing)
Polyporus (zhu ling)
Poppy Capsule (ying su qiao)
Poria (fu ling)
Prickly Ash Peel (hua jiao)
Prinsepia Seed (rui ren/zi)
Prunella (xia ku cao)
Prunus Seed (yu li ren)
Pseudostellaria (tai zi shen)
Psoralea (bu gu zhi)
Pueraria (ge gen)
Pulsatilla (bai tou weng)
Pumice (fu hai shi)
Pumpkin Seed (nan gua zi)
Purslane (ma chi xian)
Pyrite (zi ran tong)
Pyrrosia Leaf (shi wei)
Quisqualis (shi jun zi)
Radish (lai fu zi)
Realgar (xiong huang)
Red Atractylodes (cang zhu)
Red Clover (trifolium pratense)
Red Ochre (dai zhe shi)
Red Peony (chi shao)
Red Sage Root (dan shen)
Rehmannia (shu di huang)
Reishi (ling zhi)
Rhubarb (da huang)
Rice Paper Pith (tong cao)
Rose (mei gui hua)
Rosemary (mi die xiang)
Safflower (hong hua)
Saffron (fan hong hua)
Sandalwood (tan xiang)
Sanguisorba Root (di yu)
Sappan Wood (su mu)
Sargent Gloryvine (hong teng)
Saw Palmetto (ju zong lu)
Schefflera (qi ye lian)
Schisandra (wu wei zi)
Schizonepeta (jing jie)
Scirpus (san leng)
Scopolia (S. carniolica Jacq.)
Scorpion (quan xie)
Scrophularia (xuan shen)
Scutellaria (huang qin)
Sea Cucumber (hai shen)
Sea Horse (hai ma)
Seaweed (hai zao)
Selaginella (shi shang bai)
Senna (fan xie ye)
Shiitake (hua gu)
Siegesbeckia (xi xian cao)
Siler Root (fang feng)
Slippery Elm (ulmus fulva)
Smilax (tu fu ling)
Smithsonite (lu gan shi)
Sophora Flower (huai hua mi)
Sophora Root (ku shen)
Spirodela (fu ping)
Stellaria (yin chai hu)
Stemona (bai bu)
Stephania (fang ji [han])
Sweet Annie (qing hao)
Teasel Root (xu duan)
Tiger Bone (hu gu)
Torreya Seed (fei zi)
Tortoise Plastron (gui ban)
Tremella (bai mu er)
Trichosanthes Fruit (gua lou)
Trichosanthes Root (tian hua fen)
Trichosanthes Seed (gua lou ren)
Tsaoko Fruit (cao guo)
Turmeric (jiang huang)
Turtle Shell (bie jia)
Tussilago (kuan dong hua)
Urtica (xun ma)
Uva ursi (arctostaphylos uva-ursi)
Vaccaria Seed (wang bu lui xing)
Valerian (jie cao)
Veratrum (li lu)
Viola (zi hua di ding)
Vitex (man jing zi)
Walnut (hu tao ren)
Watermelon (xi gua)
White Atractylodes (bai zhu)
White Mustard Seed (bai jie ze)
White Peony (bai shao)
Wild Asparagus (tian men dong)
Windmill Palm (zong lu pi/tan)
Xanthium (cang er zi)
Zedoary (e zhu)
The Power of Vitamin K

Evidence suggests a role in cancer prevention, cardiovascular health and bone mineralization.

By James P. Meschino, DC, MS

You may have heard rumblings in recent years that vitamin K helps reduce the risk of osteoporosis and cardiovascular disease, and is administered intravenously by some integrative medical doctors who combine it with high-dose vitamin C in cancer treatment. Our original understanding of vitamin K involves its established role as a coenzyme in specific carboxylation reactions required for the synthesis of several clotting factors. In fact, drugs such as warfarin (and related vitamin K epoxide reductase inhibitors) work by limiting the ability of vitamin K to synthesize prothrombin and several other clotting proteins (Factors VII, IX and X). As such, these drugs act as blood thinners and are accompanied by the potential for certain side effects, such as easy bruising and internal bleeding.1 So, how then might vitamin K also be associated with osteoporosis, cardiovascular disease and cancer treatment?

Primary Forms of Vitamin K

The answer involves our emerging understanding that vitamin K also modulates the activities of osteoblasts, the matrix gla protein (MGP), and possesses some impressive anti-cancer properties. For all of this to make sense, you must first recognize that there are three primary forms of vitamin K, known as vitamin K1, vitamin K2 and vitamin K3. To make it more confusing, there are several forms of vitamin K2. Here is the overview:

Vitamin K1: Phylloquinone is found in appreciable amounts in plant foods, especially green, leafy vegetables (broccoli, lettuce, collards, spinach, Brussels sprouts, etc.), as well as soybeans, soy products, lentils, canola and olive oil and several other foods (liver, salad dressing, coleslaw). Absorption is surprisingly low (5–20 percent, depending on the food).

Vitamin K2 Menaquinone – There are several forms of menaquinone:

  • Menaquinone-9 (MK-9) is produced by intestinal bacteria, but not absorbed to any appreciable degree by the body.1
  • Menaquinone-7 (MK-7), derived from fermented soy (especially natto), is absorbed well and appears to play a key role in bone density via osteocalcin synthesis. MK-7 is also sold in supplement form is some countries.2
  • Menaquinone-4 (MK-4) is formed within animal bodies, often after they are injected with vitamin K3 (synthetic vitamin K, known as menadione). Menadione is put into poultry and swine rations, and appreciates in their tissues. These animals convert much of menadione to MK-4. Much of the vitamin K2 found in the body is usually from these sources (not gut bacteria-synthesized). Possibly gut-synthesized vitamin K2 (MK-9) is synthesized too far down the intestinal tract to allow absorption, whereas MK-4 found in poultry, swine products, and MK-7 from fermented soy products (natto) and vitamin K2 supplements (vitamin K1, MK-7 and prescription MK-4 in Japan) are absorbed in the small intestine within chylomicrons, upon concurrent consumption of fat. MK-4 shows impressive anti-cancer properties, such as apoptosis in leukemia and other malignant cells lines, and it appears to have a stronger influence on osteoblastic activity than does phylloquinone (K1).1

Vitamin K3: Menadione is a synthetic vitamin K. Menadione is no longer administered to humans who have a vitamin K deficiency, or injected into newborns shortly after birth, because it is associated with toxicity.1 Vitamin K does not pass from the placenta to the fetus very well. In a significant number of pregnancies, breast milk is virtually devoid of vitamin K, and newborns have no bacterial flora to synthesize their own vitamin K. Thus, classic vitamin K deficiency bleeding in the newborn usually occurs after 24 hours (usually the second day), and as late as the first week, with an incidence ranging between 0.25-1.7 cases per 100 births.1,6

Newborn infants were originally given an intramuscular injection of vitamin K3, but it caused hemolytic anemia, liver damage and brain damage (from excess bilirubin) as a side effect in some cases. Vitamin K is now administered to newborns as vitamin K1.1,7 Vitamin K1 is also the form of vitamin K used to correct vitamin K deficiencies in adults.1

However, vitamin K3 (menadione) is the form of vitamin K used intravenously, along with high-dose vitamin C, in cancer treatment (ratio is 100:1 of vitamin C: vitamin K3) by integrative practitioners, as discussed below.

Vitamin K in Bone Mineralization and Vascular Disease

Three vitamin-K-dependent proteins have been isolated in bone: osteocalcin, matrix gla protein (MGP) and protein S.

Osteocalcin is the second most prevalent protein in bone after collagen. Synthesis of osteocalcin by osteoblasts is regulated by vitamin D 1,25 dihydroxy vitamin D (calcitriol). The mineral-binding capacity of osteocalcin requires vitamin K-dependent gamma-carboxylation of three glutamic acid residues. Under-carboxylated osteocalcin is linked to increased risk for osteoporosis. MK-4 appears to be the most important form of vitamin K for osteocalcin synthesis, but the body can also use some vitamin K1 for this purpose. The body can also convert vitamin K1 to vitamin K2 for this purpose, but conversion is slow and may not be sufficient for to achieve optimal bone mineral density.1

To consume the amount of vitamin K associated with a decreased risk of hip fracture in the Framingham Heart Study (about 250 mcg/day), an individual would need to eat a little more than 1/2 cup of chopped broccoli or a large salad of mixed greens every day, which is very attainable. This provides evidence that vitamin K1 and vitamin K2 from food alone, may be all that is required to support bone density function.1 This fact is intriguing when you consider that the average intake of vitamin K from the mixed North American diet is estimated to be between 300-500 mcg per day.3

In Japan, oral doses of 45 mg of MK-4 are given to osteoporosis patients, which has resulted in increased bone density and/or reduced fractures, and increased markers of bone formation. The pooled evidence involving seven Japanese trials shows that vitamin K2 supplementation has shown a 60 percent reduction in vertebral fractures and an 80 percent reduction in hip and other non-vertebral fractures. Thus, MK-4 administration to patients with osteoporosis may be an additional method to help manage their disease.7

MGP has been found in bone, cartilage and soft tissue, including blood vessels. The results of animal studies suggest MGP prevents the calcification of soft tissue and cartilage, while facilitating normal bone growth and development. Some evidence suggests vitamin K2 plays a role in preventing cardiovascular disease by preventing arterial calcification.

Calcification of the fibrous cap is a late and significant step in the atherosclerosis process. Preventing arterial calcification may reduce deaths from vascular events. Once again, vitamin K2 appears to play a more important role than vitamin K1 in this regard.

As stated by researchers J Geleijnse, et al., "Vitamin K–dependent proteins, including matrix gla-protein, have been shown to inhibit vascular calcification." In their 7-10-year follow-up study (the Rotterdam Study), they showed that intake of phylloquinone was not related to a reduced risk of aortic calcification and coronary heart disease, whereas a significant correlation was shown for intake of menaquinone and decreased aortic calcification, coronary heart disease and all-cause mortality.4

As such, many vitamin K enthusiasts argue in favor of taking a vitamin K2 supplement to help prevent, slow or reverse the development of atherosclerosis, and to prevent and treat osteoporosis. Vitamin K2, in the form of MK-7, is available in Canada. In the U.S., only vitamin K1 is available in supplements, according to Medline Plus (National Institutes of Health).5

Protein S is also synthesized by osteoblasts, but its role in bone metabolism is unclear. However, children with inherited protein S deficiency suffer complications related to increased blood clotting, as well as decreased bone density.1

Intravenous Vitamin K3 in Cancer Treatment

The anticancer effects of sodium ascorbate (vitamin C) and vitamin K3, administered separately or in combination, on human ovarian, breast, endometrial and skin cancer cells lines has been demonstrated. When given separately, vitamin C or K3 has a growth-inhibiting action only at high concentrations, but when combined into a single lower-concentration mixture, they exhibit synergistic inhibition of cell growth that is 10-50 times greater that the single administration of vitamin C or vitamin K3 applied individually.

Studies show that these vitamins are toxic to certain cancer cells, but not to normal human cells in experimental studies. The combination of sodium ascorbate and vitamin K3 may also been shown to prevent metastasis in experimental studies.

Vitamin K3 appears to kill cancer cells via a mechanism called autoschizic cell death. Autoschizis, is a novel type of cell death characterized by exaggerated cell membrane damage and progressive loss of cell contents. During this process, the nucleus becomes smaller and cell size decreases by one-half to one-third of its original size. Co-administration of sodium ascorbate and K3 induces a cell cycle block on cancer cells, making it harder for them to grow and divide. This is called a G1/S block.

The intravenous vitamin cocktail containing sodium ascorbate and vitamin K3 also diminishes cancer cell DNA synthesis, increases H2O2 (hydrogen peroxide) production, and decreases cancer cell intracellular antioxidant defenses.8

Antibiotics and Vitamin K Deficiency

In children, adolescence and adults, vitamin D-responsive hypoprothrominemia (whereby low prothrombin levels rise with vitamin K supplementation or injection) is usually due to antibiotic therapy. It was originally thought that the antibiotic-killing of gut bacteria reduced synthesis of vitamin K2, thus proving that gut synthesized vitamin K2 (MK-9) is absorbed and important for vitamin K status and function. However, recent studies suggest antibiotics affect vitamin K homeostasis via carboxylase inhibition, or a coumarin-like effect on inhibiting vitamin K epoxide reductase.

Thus, a pre-existing low vitamin K state increases the risk of vitamin K deficiency with antibiotic use. As such, patients taking antibiotics should ensure they are eating sufficient dark green, leafy vegetables to acquire some additional vitamin K.1 In addition, they may also be inclined to supplement with vitamin K during this period. These patients should also take a probiotic supplement to help maintain normal microflora populations, which serve a variety of important functions in human health. At the moment, it doesn't appear as if vitamin K synthesis is one of them.


References

  1. Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ. Modern Nutrition in Health and Disease, 10th Edition. Lippincott Williams & Wilkins; 2006.
  2. Rhéaume-Bleue K. Vitamin K2 and the Calcium Paradox John Wiley & Sons Canada, Ltd.; 2012: pgs. 66-67.
  3. Krause M, Mahan LK. Food, Nutrition and Diet Therapy, 7th Edition. W.B. Saunders Company; 1984: pg. 118
  4. Gelieijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MH. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. Am J Clin Nutr, 2004,134;11:3100-3105.
  5. Information on vitamin K. Medline Plus; U.S. National Library of Medicine, National Institutes of Health.
  6. Nimavat DJ. "Hemorrhagic Disease of Newborn." Medscape.com, last updated April 13, 2012.
  7. Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med, 2006;166:1256-1261.
  8. Lamson DW, Plaza SM. The anticancer effects of vitamin K. Alt Med Review, 2003;8(3):303-318.

Dr. James Meschino, a graduate of Canadian Memorial Chiropractic College, is director of nutritional therapies at the Canadian Integrative Cancer Immunotherapies Clinic in Toronto. He can be contacted via his Web site, www.meschinohealth.com.

Nutritional Wellness News Update: